
Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 1

Agile Software Development
The Cooperative Game:

An Overview

Alistair Cockburn
http://Alistair.Cockburn.us

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 2

Agile Software Development,Cooperative Game
Schedule of the day

I. Programming / Cooperative Games

II. People / Communication / Cooperation

III. Self-Evolving Methodologies

IV. Agile Techniques

V. Named Agile Methodologies

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 3

Things you may take away from today:
•  The Cooperative Game vocabulary
•  Manage the incompleteness of communication
•  Distance hurts. (So DON’T DO IT !)
•  Take advantage of face-to-face communication.
•  Incremental delivery => Product feedback
•  Reflection workshops => Process feedback
•  Use of information radiators
•  Relevance of amicability and convection currents
•  Three levels of skill (shu, ha, ri)
•  Why methodologies need tuning to fit their ecosystem
•  How to tune yours to your project and your people
•  Timeboxing / increments as core technique
•  Burn-down charts for visibility, iceberg list for scheduling
•  Concurrent development saves time
•  Optimize the rules to fit project-specific bottenecks
•  All agile methodologies use empiriical process, cooperative game concepts
•  How to mix in Scrum, consider other named agile methodologies
•  How to look for agile methodologies in your environment

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 4

Agile Software Development,Cooperative Game
Schedule of the day

I. Programming / Cooperative Games

II. People / Communication / Cooperation

III. Self-Evolving Methodologies

IV. Agile Techniques

V. Named Agile Methodologies

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 5

Cockburn 1998: Making software consists only
of making ideas concrete in an economic context:

People inventing and communicating, solving a problem they
don't yet understand (which keeps changing),

Creating a solution they don't really understand
 (and which keeps changing),

Expressing ideas in restricted languages they don’t really
understand, (and which keep changing)

To an interpreter unforgiving of error.

Resources are limited,
and every choice has economic consequences.

It is a cooperative game of invention and communication !

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 6

Software development is a Cooperative Game
of Invention and Communication.

To understand team software development:
•  Understand goal-directed cooperative games
•  Understand people communicating
•  Understand people inventing
•  Understand people cooperating

Notes on Cooperative Game: Two goals:
 Primary Goal → Deliver this software
 Secondary Goal → Set up for the next game
 Two conflicting games in one
 Net result: Not repeatable !

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 7

Infinite
Organization Survival

Career Management

Games, finite/infinite or cooperative/competitive,
consist of better/worse ‘moves’

Competitive Cooperative

Finite w/
no fixed end Jazz music King-of-the-hill

wrestling

Finite &
goal-directed

Tennis
Software

Developme
nt

Poker

Rock-Climbing

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 8

Musashi 1685: swordfighting (or gaming?)
-discuss how this relates to programming-

* The field of martial arts is particularly rife with
flambouyant showmanship, with commercial
popularization and profiteering.

* Other schools become theatrical, dressing up
and showing off to make a living.

* If your sword misses the opponent, leave it
there for the moment, until the opponent
strikes again, whereupon strike from below

* You should observe reflectively, with overall
awareness of the large picture as well as
precise attention to small details...

* The views of each school, and the logic of
each path, are realized different, according to
the individual person, depending on the
mentality...

* One can win with the long sword, and one can
win with the short sword.

* Where you hold your sword depends on your
relationship to the opponent, on the place, and
must conform to the situation;

* wherever you hold it, the idea is to hold it so
that it will be easy to kill the opponent. This
must be understood.

* Whatever guard you adopt, do not think of it
as being on guard; think of it as part of the act
of killing.

* In my school, no consideration is given
to anything unreasonable; the heart of the
matter is to use the power of knowledge of
martial arts to gain victory any way you can.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 9

Every game run uses different strategies --
Set up each project’s suitably or suffer

Number of people coordinated

Comfort

Essential
moneys

Life

1 - 6 - 20 - 40 - 100 - 200 - 500 - 1,000

C6 C20 C40 C100 C200 C500 C1000

D6 D20 D40 D100 D200 D500 D1000

E6 E20 E40 E100 E200 E500 E1000

L6 L20 L40 L100 L200 L500 L1000

Discretionary
moneys

“Criticality”

X

X X

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 10

Naur 1986: The primary result of programming
is the theory held by the programmers

1. Theory: The knowledge a person must have to do certain
things intelligently, explain, answer queries, argue about
them...

2. The programmer must Build a Theory of how certain affairs
of the world will be handled by a program; Explain how the
affairs of the world are mapped into the program and
documentation; Respond to demands for modifications,
perceiving the similarity of the new demand with the
facilities built.

•  This knowledge transcends that possible in documentation.

3. This theory is the mental possession of a programmer; the
notion of programmer as an easily replaceable component in
program production has to be abandoned.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 11

Naur 1986: Modifying a program depends on the
new programmers building the same theory !

4. Problems of program modification arise from assuming
that programming consists of text production, instead of
theory building.

5. The decay of a program from modifications made by pro-
grammers without proper grasp of the underlying theory
becomes understandable. The need for direct participation
of persons who possess the appropriate insight becomes
evident. For a program to retain its quality it is mandatory
that each modification is firmly grounded in its theory.

6. The conclusion seems inescapable that at least with certain
kinds of large programs, the continued adaption,
modification, and correction, is essentially dependent on a
certain kind of knowledge possessed by a group of
programmers who are closely and continuously connected
with them.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 12

Naur 1986: Programming as Theory Building
(Case Studies)

CASE 2
A program of 200,000 lines ... The installation
programmers have been closely concerned
with the system as a full time occupation over
a period of several years, from the time the
system was under design. When diagnosing a
fault they rely almost exclusively on their
ready knowledge of the system and the
annotated program text, and are unable to
conceive of any kind of additional
documentation that would be useful to them.

 Other groups, who received documentation
and guidance from the producer's staff,
regularly encounter difficulties that upon
consultation with the installation programmers
are traced to inadequate understanding of the
documentation, but which can be cleared up
easily by the installation programmers.

CASE 1
A compiler extension ... Group B’s solutions
were found by group A to make no use of the
facilities that were inherent in the existing
compiler and were discussed at length in its
documentation; based instead on patches that
effectively destroyed its power and simplicity.

Group A members were able to spot these
instantly and could propose simple, effective
solutions, framed within the existing structure.

This is an example of how the program text
and additional documentation is insufficient in
conveying to even the highly motivated group
B the deeper insight into the design, that
theory which is immediately present to the
members of group A.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 13

Naur 1986: There can be no right method;
Design Simply.

7. On the Theory Building View, which techniques to use and in
what order must remain entirely a matter for the
programmer to decide, taking into account the actual problem
to be solved.

8. It is often stated that programs should be designed to include a
lot of flexibility, so as to be readily adaptable to changing
circumstances. However, flexibility can in general only be
achieved at a substantial cost. Each item of it has to be designed,
including what circumstances it has to cover and by what kind of
parameters it should be controlled. Then it has to be
implemented, tested, and described. This cost is incurred in
achieving a program feature whose usefulness depends
entirely on future events.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 14

Phil Armour’s 2003 “Laws of Software Process”
match Theory Building, Cooperative Gaming:

Process only allows us to do things we already know how to do.
The only processes we can use on the current project were

defined on previous projects. ... Which were different from
this one.

We can only define software processes at two levels:
too vague and too confining

Software process rules should be stated in terms of two levels:
a general statement of the rule, and a specific detailed
example

The last knowledge to be implemented into an executable
software system will be the knowledge of how to implement
knowledge into an executable software system.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 15

Agile Software Development,Cooperative Game
Schedule of the day

I. Programming / Cooperative Games

II. People / Communication / Cooperation

III. Self-Evolving Methodologies

IV. Agile Techniques

V. Named Agile Methodologies

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 16

COMMUNICATION (e.g. this talk) is
a sequence of touching into shared experience

Linked sequences of shared experience
becomes a shared experience !
-  Project colleagues have rich shared

experiences, a shortcut vocabulary

Implications for documentation:
-  can never fully specify requirements
-  can never fully document design
-  must assume reader’s experiences

more => can write less
less => must write more.

Our task is to manage the
incompleteness of communications !!!

the program
“theory”

design
patterns

UML

source code

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 17

COMMUNICATION:
 Perfect communication is impossible

You try to communicate what you “know”

•  What you “know” depends on your individualized parsing
of the world around you;

•  You don’t know what it is you do know;

•  You neither know the thing you are trying to
communicate nor what you are actually communicating;

•  Your listener sees only a part of what you are saying;

•  What your listener learns depends on his/her internal
state (plus everything around you).

(p.s. How is it we communicate at all?)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 18

Our perceptions lie to us; our memory lies to us;
we all parse experience differently.

(wine bottle)

This figure is built from which of the figures on the right?

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 19

You don’t need perfect communication:
You need “good enough to proceed”

•  You don’t know what you know, nor the thing you are
trying to communicate nor what you are communicating.

•  Your listener sees only a part of what you are saying.
-  Your body communicates subvocally directly to the

listener’s emotions

•  What your listeners learn depends on their mental
state.
-  You only ‘take on’ what you are ready to

•  “Equivocality” is the ambiguity in communication.
-  It will never be zero (no matter how hard you try)
-  Action and feedback reduces it to acceptable levels.
-  That is Good Enough

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 20

Face-to-face allows vocal, subvocal, gestural
information to flow, with fast feedback

Richness of communication channel

C
om

m
un

ic
at

io
n

Ef
fe

ct
iv

en
es

s 2 people at
whiteboard

2 people
on phone

2 people
on chat

Videotape

Paper
Audiotape

(No Question-Answer)

(Courtesy of Thoughtworks, inc.)

cooler warmer

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 21

Experience incommunicability and elementary
Agile techniques for yourselves

Divide each into Specifiers and Artists.

The Specifiers will ask the Artists
to draw a drawing for them.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 22

Draw a Drawing
1st round -- 10 minutes

1. Specifiers and Artists move to opposite ends of
the room.
 (this corresponds to distributed virtual teams)

2. Specifiers WRITE instructions to their Artists
on what to do (no drawings allowed). One
Specifier carries messages back and forth, can
watch but NOT speak at Artist side.

4. Artists may write messages back.
5. SMS messages OK on cell phones, but no MMS.
6. NO speaking or drawing between Specifiers and

Artists.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 23

Reflection technique: Write in this chart.
What worked? What might you try next time?

(this is a core technique you should use
every month on every project !)

Try These Keep These

Ongoing Problems

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 24

PAUSE
5 MINUTES

1. Pause. Most teams do not create a way to
change process “on the fly”. We need a way to
evolve the process.

2. Discuss and reflect: what went good and bad.
 (DO NOT SHOW THE DRAWING !)

3. Adjust your strategy for the next round.
4. Use the reflection technique & chart.

(this corresponds to “iterative development” with
process feedback.)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 25

Draw a Drawing
2nd round -- 5 minutes

1. As before, but use incremental technique:
2. Specifiers describe only ONE shape.
 (Advanced teams: two people one shape each.)

3. After Artists have drawn the shape,
they send it (or copy) to the Specifiers to see.

4. Specifiers can decide whether to correct that
shape, or go on with the next shape.

(this corresponds to “incremental delivery” with
product feedback.)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 26

PAUSE
5 MINUTES

1. Assume only 1 Specifier on next drawing
(everyone else is an Artist).

2. Strategize on the Best way to work
(including sitting together, talking in person).

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 27

Draw a Drawing
3rd round -- 5 minutes

1. Specifier from each team comes and looks at
drawing, puts into her/his memory.

2. Specifier, WITHOUT DRAWING ANYTHING,
communicates it as well as possible to rest of
team.

(this corresponds to Customer attempting to
describe needed product to development team)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 28

End. You have just seen a cooperative game
of invention & communication in action.

8 things you may have observed:

•  Distance hurts. (So DON’T DO IT !)
•  Sitting together, multimodal communication help.
•  Communication has its limits.
•  Both Process and Product feedback are needed.
•  A process needs to allow for its own evolution.
•  Action & Feedback help reduce ambiguities.
•  Pause and reflect to get better.
•  One possible reflection workshop technique.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 29

Things you may take away from today:
•  The Cooperative Game vocabulary
•  Manage the incompleteness of communication
•  Take advantage of face-to-face communication.
•  Pause and reflect on your Process with a Reflection workshop
•  Distance hurts. (So DON’T DO IT !)
•  Use Incremental delivery to get Product feedback
•  Use of information radiators
•  Relevance of amicability and convection currents
•  Three levels of skill (shu, ha, ri)
•  Why methodologies need tuning to fit their ecosystem
•  How to tune yours to your project and your people
•  Timeboxing / increments as core technique
•  Burn-down charts for visibility, iceberg list for scheduling
•  Concurrent development saves time
•  Optimize the rules to fit project-specific bottenecks
•  All agile methodologies use empiriical process, cooperative game concepts
•  How to mix in Scrum, consider other named agile methodologies
•  How to look for agile methodologies in your environment

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 30

Kim

Pat

COMMUNICATION uses
“Convection Currents of Information”

Proximity

Osmosis

Drafts

Radiators

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 31

What can we tell from
an office plan?

Courtesy of
RoleModel Software

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 32

Poor office layout costs the project a lot

Programmers cost = $ 2.10 / minute (± 50%)

Reference pair programming @ 100 questions/week
1 minute delay / question = $ 210 / week
 ... for 12 people on a project = $ 2,500 / week
 ... for 12 month project = $ 100,000

... plus Lost Opportunity Costs for questions not
asked!

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 33

Kim

Pat

Think $300,000 / yr penalty.

Kim Pat
Think $100,000 / yr penalty.

People don’t ask questions if they have to
climb stairs.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 34

“Managing the Flow of Technology,” Thomas J. Allen,
 M.I.T. Sloan School of Management

“Distance Matters,” Olson & Olson

Kim Pat Most effective.

Kim Pat Still Effective.

Information drifts in currents --
(not unlike perfume)

Nearby programming

Programming in pairs

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 35

Photo courtesy of Thoughtworks corp.

“Nearby programming” is effective.
 “Programming in pairs” is more effective.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 36

Photo courtesy of Evant corp.

Notes: Put barriers up to reduce DRAFTS !
Morale also flows through convection currents!

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 37

Set up rooms to balance drafts
and osmotic communication

Courtesy of Ken Auer,
RoleModel Software, Inc.

Programming work

Private work

Meeting
Kitchen

Library
Watch for:
- drafts
- convection currents
- communities

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 38

Information Radiators are the 4th piece of
the Convection Currents story...

  Proximity

  Osmosis

  Drafts

  Radiators

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 39
Photos courtesy of Thoughtworks

People get information
just by walking past !

Information radiators emit
passively

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 40

Courtesy of Evant corp.

Courtesy Joshua Kerievsky

Iteration Plan Reflection workshop results

Information radiators are suited for
plans, status, initiatives

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 41

Normal team Aligned team

(Dirty Dozen again)

COOPERATION: The alignment of people’s
goals affects the team efficiency

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 42

COOPERATION: Amicability between people
determines how quickly information moves

Amicability : Willingness to listen with good will

The “amicability index” indicates how easily
information passes from one part of the
organization to another.

A low amicability index implies that people block
the flow of information, intentionally or through
not listening well.

Amicability grows and rots fastest in osmotic
communication settings !

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 43

Weak on: Strong on:
 Consistency Communicating
 Discipline Looking around
 Following instructions Copy / modify

 Motivated by:
 Pride in work
 Pride in contributing
 Pride in accomplishment

PEOPLE are essential but non-linear active
components in the development process

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 44

People, cooperation, communication issues
determine much of a project’s speed

Can they easily detect something needs attention?
 (Good at Looking Around)

Will they care enough to do something about it?
 (Pride-in-work; Amicability)

Can they effectively pass along the information?
 (Proximity; face-to-face, convection currents)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 45

PEOPLE: The teams with the best people
usually win

Talent is not skill
Skills can be developed at the rate of talent

 Improve the people instead of adding people
Pay fewer, better people higher salaries

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 46

PEOPLE learn skill in a 3-stage progression
 Following - Breaking away - Fluency

Level 1: Following (Shu)
Learn “a technique that works”
“Success” is following the technique

Level 2: Breaking away (Ha)
Learn limits of the technique
Learn to shift from one technique to another

Level 3: Fluency (Ri)
Shift techniques by moment
Unable to describe the techniques involved

These apply to design, management, methodology,
are relevant to project staffing.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 47

Things you may take away from today:
•  The Cooperative Game vocabulary
•  Manage the incompleteness of communication
•  Take advantage of face-to-face communication.
•  Pause and reflect on your Process with a Reflection workshop
•  Distance hurts. (So DON’T DO IT !)
•  Use Incremental delivery to get Product feedback
•  Use of information radiators
•  Relevance of amicability and convection currents
•  Three levels of skill (shu, ha, ri)
•  Why methodologies need tuning to fit their ecosystem
•  How to tune yours to your project and your people
•  Timeboxing / increments as core technique
•  Burn-down charts for visibility, iceberg list for scheduling
•  Concurrent development saves time
•  Optimize the rules to fit project-specific bottenecks
•  All agile methodologies use empiriical process, cooperative game concepts
•  How to mix in Scrum, consider other named agile methodologies
•  How to look for agile methodologies in your environment

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 48

Agile Software Development,Cooperative Game
Schedule of the day

I. Programming / Cooperative Games

II. People / Communication / Cooperation

III. Self-Evolving Methodologies

IV. Agile Techniques

V. Named Agile Methodologies

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 49

Process

Techniques

Tools Skills

Roles

Standards

Quality Teams

Products

Milestones Activities

Regression tests
Object model
Project plan
Use cases

Microsoft Project
3month increments
UML / OMT
C++

Microsoft Project
STP
Envy/Developer

Modeling
Java programming
JAD facilitation

Personality

Project manager
Documenter
Designer
Tester

MBWA
Use cases
CRC cards

A methodology is a formal structure that
idealizes personality

Methodology

Values

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 50

A methodology addresses notations, tools,
AND people, organization and culture

Notation Tools
People, Organization, Culture

Factory
Control
System

Products

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 51

Any methodology attacks a limited subset of
the project lifecycle, roles, role activities

envisioning proposal sales setup requirements design & code test deploy train alter
Project Lifecycle

designer/programmer

writer
tester

reuse point
UI expert
lead designer
business expert
expert user
project manager
project sponsor

trainer
secretary
contractor
night watchman
janitor

Ro
le

s
rest and recreation

project development
timesheets

technical education
vacations and basic business

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 52

A methodology meets its limits when it meets
-people-

“Your strategic plan,
 brilliant in concept and

 magnificent in execution,
isn’t working.”

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 53

Ecosystem Methodology

Process

Techniques

Tools Skills

Roles

Standards

Quality Teams

Products People

Milestones Activities

Personality

Jenny

Jim
Peter

Annika

A methodology is a formula across people, but
People are stuffed full of personality

Project manager
Documenter
Designer
Tester

Values

Values

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 54

People come in different shapes.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 55

The person who shows up may not fit the
role’s profile.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 56

Jenny
(Pete)

Marketplace Programmers

Bill
Mary

Marketing
group

Business
analysts

Level 1 practice: Stick to the methodology
Level 2, 3 practice: Adapt to the situation

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 57

 Jill John Bob Pat Kim Mark
Business Y Y y
U.I. Y Y
OO A/D Y + Y
Java Y Y
Rel. DB Y y

Consider clustering subteams around skills
with an Assignment X Skills matrix

This is the [Assignment x Skills] matrix

Team 1 Team 2

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 58

Most methodologies are just too complicated!
Start with less than you need, add to it.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 59
Methodology Weight

Problem
size

What size problem can a given number of people attack,
using various methodology weights?

Many people (using a light methodology)

Many people (using a heavier methodology)

Many people
(using a very heavy
methodology)

Methodologies have quick payoff, early
diminishing returns. Larger teams need more

few people

many people

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 60

No methodology will fit the whole company.
Select one to suit your project

Number of people coordinated

Comfort

Essential
moneys

Life

1 - 6 - 20 - 40 - 100 - 200 - 500 - 1,000

C6 C20 C40 C100 C200 C500 C1000

D6 D20 D40 D100 D200 D500 D1000

E6 E20 E40 E100 E200 E500 E1000

L6 L20 L40 L100 L200 L500 L1000

Discretionary
moneys

“Criticality”

X

X X

?

?

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 61

Any methodology attacks a limited subset of
the project lifecycle, roles, role activities

envisioning proposal sales setup requirements design & code test deploy train alter
Project Lifecycle

designer/programmer

writer
tester

reuse point
UI expert
lead designer
business expert
expert user
project manager
project sponsor

trainer
secretary
contractor
night watchman
janitor

Ro
le

s
rest and recreation

project development
timesheets

technical education
vacations and basic business

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 62

You can mix in complementary segments.
e.g. add UI design techniques to XP

setup requirements design code test

designer / programmer
user
coordinator
sponsor

Ro
le

s

project monitoring
application development

 UI designer

coach
designer / programmer

setup requirements design code test

coordinator
sponsor

Ro
le

s
project monitoring

application development

coach
designer / programmer

UI designer
user

XP

Usage-centered
design

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 63

Most importantly, a methodology needs to
allow itself to EVOLVE

Almost none do

A methodology encapsulates the best that the
methodologist knows.
“The word methodology begins with Me.”(Weinberg)
“Let’s talk about Me for a minute.” (Marick, STQE)

But the Best changes over time.
Ergo, the methodology must change over time.

How?

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 64

Crystal self-adapts: methodology tuning early;
reflection workshops monthly/quarterly

Start of project:
Choose an iteration (increment) duration,
Interview people to learn key issues, hazards.
Hold tuning workshop to build starter set of rules.
That is your “starter” methodology.

Get feedback periodically:
Hold “reflection workshop” periodically:

monthly / quarterly / mid- & post-increment;
one hour, half hour, half day

Update the project with new rules and conventions

Post the results prominently for all to see!
(Hidden results are no results)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 65

Reflection technique: Write in this chart.
What worked? What might you try next time?

(this is a core technique you should use
every month on every project !)

Try These Keep These

Ongoing Problems

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 66

Things you may take away from today:
•  The Cooperative Game vocabulary
•  Manage the incompleteness of communication
•  Take advantage of face-to-face communication.
•  Pause and reflect on your Process with a Reflection workshop
•  Distance hurts. (So DON’T DO IT !)
•  Use Incremental delivery to get Product feedback
•  Use of information radiators
•  Relevance of amicability and convection currents
•  Three levels of skill (shu, ha, ri)
•  Why methodologies need tuning to fit their ecosystem
•  How to tune yours to your project and your people
•  Timeboxing / increments as core technique
•  Burn-down charts for visibility, iceberg list for scheduling
•  Concurrent development saves time
•  Optimize the rules to fit project-specific bottenecks
•  All agile methodologies use empiriical process, cooperative game concepts
•  How to mix in Scrum, consider other named agile methodologies
•  How to look for agile methodologies in your environment

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 67

Agile Software Development,Cooperative Game
Schedule of the day

I. Programming / Cooperative Games

II. People / Communication / Cooperation

III. Self-Evolving Methodologies

IV. Agile Techniques

V. Named Agile Methodologies

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 68

The Agile Manifesto embodies the
cooperative game ideas

“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over Processes and Tools
Working software over Comprehensive documentation
Customer collaboration over Contract negotiation
Responding to change over Following a plan

That is, while there is value in the items on
the right, we value the items on the left more. “

(©2001, Beck, Beedle, van Bennekum, Cockburn, Cunningham,
Fowler, Grenning, Highsmith, Hunt, Jeffries, Kern, Marick,
Martin, Mellor, Schwaber, Sutherland, Thomas)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 69

Agile Software Development

How to Cheat (Legally) and Win

Alistair Cockburn
Humans and Technology
alistair.cockburn@acm.org
http://Alistair.Cockburn.us

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 70

If you wanted to ‘cheat’ and win,
 what could you do?

Hire only the best people;
Seat them close together, helping each other out,

learning each other’s skills;
Give them good tools and training as they need;
Get them close to the Customers and users,
 who show them what they want;

Have them show / deliver results to the users
 frequently for direct feedback;

Cut out the bureaucracy
Let them find inventive, inexpensive ways to
 document their work

 (Let them work in Agile fashion)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 71

Key techniques in Agile Development

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 72

House packing exercise

Work in groups of 4-6 people

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 73

Create an Information Radiator for
Packing your House (15 minutes)

Your (American) house has 14 rooms total, including garage.
In 33 days, the movers will pick up the packed boxes.
Pack everything into boxes and put them into the garage.
The next morning you fly to India.
You cannot be late.

1. Work in groups of 4-6 people.
2. Decide on a work plan for packing the house.
3. Create information radiator (table/graph/chart)

so that you always know how well you are doing.
4. Show how your display looks after 18 days.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 74

Timeboxing is a critical element in iteration
scheduling

2-week, 1-month (,quarterly) timeboxes.

Each timebox ends with integrated, tested code.

Cut scope as needed but complete on time.
Deliver whatever you have
Whatever you accomplished this time is a predictor

of what you will accomplish next time
 (“Yesterday’s Weather”)

(some timeboxing fixes requirements, some don’t)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 75

The “burn-down” chart and variations show a
project’s progress visibly and publicly

Visibility of rate-of-progress and achievements
are critical project management information

Works because task list is fixed in size

“Iceberg” list useful when task list changes daily
Use spreadsheet or similar
List tasks
Developers estimate time, Managers prioritize
Sort in priority order
Derive which tasks are in schedule for this current

iteration / delivery.
Managers can change priorities

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 76

Method #1. The whole house, by “importance”
 No view into progress & no warning of trouble

Discover the 10%
completely unexpected!

Discard the 5% junk

Pack the 80 %
not-so-critical

Pack the 15% critical
expected actual

Time

 No visibility into
what is happening here !

Surprise! % Complete

expected
done

actually
done

Day
18

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 77

Surprise!

Method #2. Estimate boxes to be packed.
Good visible progress. No warning of trouble!

expected # boxes needed

Time

Surprise!

Boxes Packed

Estimate
boxes
needed

expected
done

actually
done

(actual # boxes needed)

Day 18

An unknown
number !!

An unknown
time !!

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 78

Method #3. Packing each room to completion.
Good visibility & early warning.

Time

Surprise! 14

Day 33
0

Rooms Still to Pack

Day 18

This strategy works because:
1. The # rooms won’t increase.
2. Feedback is on full process.

This is an example of a Burn-Down chart

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 79

Timeboxing uses the ‘Validation V’:
 Not waterfall, but a fact of life.

Req'ts

Design

Validate syntax

Validate req'ts

Code

Validate logic

How can we use this 'fact of life'?

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 80

1 24-month V is “waterfall”.
6 4-month Vs are incremental, effective.

?

Adjustment
Points

1-10

?

?

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 81

Short Vs allow focus of attention, learning,
 better estimation, process & team changes.

6-16 weeks

?

?

Aha !

Ah

Staff changes
Management changes
Process changes

Aha !

1-10

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 82

Some Vs (iterations) end with “examination”
Some Vs (increments) end in “delivery”
Increments should be 4 months or less.

4 months 3 months 3 months

2 1 1 1 1 1 1 1 1

D D D

E E E E E E

Example of incremental plan from one project.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 83

Every V is a major milestone
 for the Project Manager's calendar

use case 22

class 9

use case 21

screen 11

use case 22

week 41 week 42 week 43 week 44 week 40

class 9

use case 21
screen 11

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 84

“Every team must deliver working function
every 2 - 4 months.”

The most important single project policy to apply.

Read about incremental development:
“Surviving Object-Oriented Projects” pages 117 - 130

(now available in Japanese)
also on the web:
 http://alistair.cockburn.us
 /crystal/articles/vws/vwstaging.html

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 85

Concurrent Development

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 86

C
om

pl
et

en
es

s,
St

ab
ili

ty

Time

Requirements

Testing

UI & Object
Design

Programming

Serial Development takes most time,
 least money (maybe)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 87

C
om

pl
et

en
es

s,
St

ab
ili

ty

Time

Requirements

Testing

UI & Object
Design

Programming

Concurrent Development takes less time
 more money (maybe)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 88

Requirements

C
om

pl
et

en
es

s,
St

ab
ili

ty

Time

Smalltalk

DBA

Correct amount of Stability depends on the
Bottlenecks !

DBA

Smalltalker

Smalltalker

Smalltalker

Smalltalker

Smalltalker

Req’ts

Req’ts

You can spend
excess capacity in rework
to speed the game!

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 89

Different project have different bottlenecks,
and need different strategies

Project 1: Simplify life for the DB designer, make programmers do extra

Project 2: Simplify life for the programmers / tester, make Bus. Mgrs. do extra

Database designer

Programmer

Programmer

Programmer

Programmer

Programmer

Req’ts

Req’ts

User

Tester

Programmer

Programmer

Programmer

Programmer

Bus. Mgr.

Bus. Mgr.
User

User

User

User

Bus. Mgr.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 90

Things you may take away from today:
•  The Cooperative Game vocabulary
•  Manage the incompleteness of communication
•  Take advantage of face-to-face communication.
•  Pause and reflect on your Process with a Reflection workshop
•  Distance hurts. (So DON’T DO IT !)
•  Use Incremental delivery to get Product feedback
•  Use of information radiators
•  Relevance of amicability and convection currents
•  Three levels of skill (shu, ha, ri)
•  Why methodologies need tuning to fit their ecosystem
•  How to tune yours to your project and your people
•  Timeboxing / increments as core technique
•  Burn-down charts for visibility, iceberg list for scheduling
•  Concurrent development saves time
•  Optimize the rules to fit project-specific bottenecks
•  All agile methodologies use empiriical process, cooperative game concepts
•  How to mix in Scrum, consider other named agile methodologies
•  How to look for agile methodologies in your environment

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 91

Agile Software Development,Cooperative Game
Schedule of the day

I. Programming / Cooperative Games

II. People / Communication / Cooperation

III. Self-Evolving Methodologies

IV. Agile Techniques

V. Named Agile Methodologies

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 92

Some agile methodologies are named,
Many never get named.

Scrum
XP
FDD

DSDM
Crystal
Grizzly

....and an indefinite number of others

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 93

Scrum: Software needs an “empirical
process”, therefore check on it regularly !

Ken Schwaber, Jeff Sutherland, Michael Beedle
-  www.controlchaos.com
-  Agile Software Development with Scrum by

 Ken Schwaber and Mike Beedle

Defined process: you can leave it to a robot.
Empirical process: A human has to look at it.

Software development is NOT a “defined” process
-  Expect it to behave unpredictably
-  Therefore:

*** Check on it daily and monthly ***

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 94

Scrum: timebox monthly with iceberg list,
use burn-down chart monthly, daily stand-up

Each month, iceberg list for month (“sprint”)
 lock the list for the month

Daily stand-up meeting <15 minutes long
“What I did yesterday,
“What I plan to do today,
“What’s holding me up”

“Scrum master” removes obstacles to progress.
Demo or ship results each month.

Scrum is a perfect “mix-in” for any project

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 95

Priorities
Productivity, maintainability.
Rely on tools, communication.
Lighten methodology by

 increasing discipline.

C6 C10 C20

D6 D10 D20

E6 E10 E20

XP: A high-discipline, programmer-centric
minimalist methodology

Activities

Techniques

Skills

Roles

Quality

Products

Teams

Tools Standards

setup requirements design code test
Project Lifecycle

designer / programmer
user
coordinator
sponsor

Ro
le

s

project monitoring
application development

 UI designer

coach
designer / programmer

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 96

Extreme Programming characterized

 Quality
System comparison test
Functional test
Full unit tests
Coding standards
Code cost model
"Once and only once"

 Activities
Setting the metaphor
Planning
Daily stand-upmeeting
DesigningProgramming
Testing
Postpartum Teams

Programming teams
User team
Production team

 Products
Release Plan
Story Cards
Task list & estimates
Running code
Migration programs
Tests
Reports
 Standards
Coding style
Episodal development
3-week deliveries
Test case style
Always perfect unit test
Programming in Pairs

 Techniques
Metaphor building
Planning Game
Teamwork motivation
Test-case-first development
Refactoring

 Roles
Sponsor
User
Coordinator
Designer/Programmer
Production support
Coach

 Skills
Programming
Refactoring
Testing

 Tools
Smalltalk / Java / ...
Envy/Developer
Refactoring browser
Test-case framework
Performance tuning

Values:
Communication
Keeping it simple
Testing
Courage

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 97

XP expects discipline in the team,
distributes responsibilities across roles

3-week iterations, variable delivery schedule

Pair programming (osmotic communication)

Planning game (iceberg chart)

Automated unit tests, frequent integration

Must test, must refactor, must pair-program

“Customer” on site
-  “Customer” role is overloaded

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 98

DSDM: Industrialized “rapid
application development”

Developed in the UK in the mid-1990s from RAD

Managed by the DSDM Consortium

References:
www.dsdm.org
DSDM: A Framework for Business-Centered Development

Jennifer Stapleton, Addison-Wesley 2003.

Core practices:
Business study, prototyping, project management

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 99

DSDM is built around 9 core principles

1. Active user involvement is imperative.
2. DSDM teams must be empowered to make decisions.
3. The focus is on frequent delivery of products.
4. Fitness for business purpose is the essential

criterion for acceptance of deliverables.
5. Iterative and incremental development is necessary

to converge on an accurate business solution.
6. All changes during development are reversible.
7. Requirements are baselined at a high level.
8. Testing is integrated throughout the lifecycle.
9. A collaborative and co-operative approach between

all stakeholders is essential.

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 100
1 Slides on DSDM provided by Dane R. Falkner - DSDM North American Chairman.

DSDM Model

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 101

Feature-Driven Development is based on
Chief-Programmer, modeling, feature lists

Developed by Jeff De Luca
www.FeatureDrivenDevelopment.com
Java Modeling In Color With UML (chapter 6) by

Peter Coad, Eric Lefebvre, Jeff De Luca, 1999.
Minimalist 5-step process

Key elements: (Contrast with XP !)
-  Tight “process” with entry/exit criteria
-  Fix time, scope and cost early
-  Chief Programmer with class owners
-  A central model, features are matched to it
-  Review domain, Design feature, Inspect feature

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 102

FDD and Its Five Parts

An object model

(more shape than
 detail)

Major feature sets,
 feature sets,
 features

The development
 plan

Sequence diagram

(more detail than
 shape)

Client-valued
 functionality

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 103

“Adaptive” Software Development is an agile
mindset for running projects

Developed by Jim Highsmith
Grew out of RAD approach in the mid 1990s
Practices for scaling to larger projects
Introduces an “Agile” management style called

Leadership-Collaboration
References:

-  Adaptive Software Development:
A Collaborative Approach to Managing
Complex Systems, James Highsmith,
Dorset House 2000.

-  www.adaptivesd.com
-  www.crystalmethodologies.org

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 104

The Adaptive Life Cycle

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 105

The Adaptive Life Cycle

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 106

Crystal is a family of self-adapting, tolerant
agile methodologies

Every project is different
needs its own methodology

Crystal is indexed by color
for # people on the project.

Only frequent deliveries and
post-delivery reflection
workshops are mandatory.

Keep it light and self-adapting

Attend to cooperative game & concurrent development
principles

Red
C6 C20 C40 C80

D6 D20 D40 D80

E6 E20 E40 E80

Clear Yellow Orange

L6 L20 L40 L80

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 107

Crystal comes with
Philosophy, Principles, Techniques, Samples

Philosophy: Software development is a resource-
limited cooperative game of invention and
communication. (There is no “formula”)

Principles: Deliver early & regularly,
Maximize fast, informal communication,
Reflect and improve

Techniques: Reflection workshop,
Project planning jam session,
Process miniature

Samples: Crystal Clear, Orange, OrangeWeb
See Agile Software Development, Cockburn 2002

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 108

Crystal is based on 7 principles:

1. Interactive face-to-face is the cheapest,
fastest channel to exchange information.

2. Methodology weight is costly.
3. Larger teams need heavier methodologies.
4. More critical projects need more ceremony.
5. More feedback & communications mean fewer

intermediate work products.
6. Discipline, skills, understanding counter

process, formality, documentation.
7. Efficiency is expendable at non-bottleneck

activities (concurrent development principle).

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 109

Crystal works from a base methodology tuned
by people and principles

Start of project:
Choose an iteration (increment) duration,
Interview people to learn key issues, hazards.
Hold tuning workshop to build starter set of rules.
That is your “starter” methodology.

Get feedback periodically:
Hold “reflection workshop” periodically:

monthly / quarterly / mid- & post-increment;
one hour, half hour, half day

Update the project with new rules and conventions

Post the results prominently for all to see!
(Hidden results are no results)

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 110

Most “agile” methodologies are home-grown,
but share essential qualities:

Frequent delivery of running, tested code

Close communication / collaboration with
developers, end users and customers

High levels of tacit knowledge

Low ceremony, fewer “paper” products

Short-term design horizon, periodic redesigns

... (see the Agile Manifesto) ...

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 111

Things you may take away from today:
•  The Cooperative Game vocabulary
•  Manage the incompleteness of communication
•  Take advantage of face-to-face communication.
•  Pause and reflect on your Process with a Reflection workshop
•  Distance hurts. (So DON’T DO IT !)
•  Use Incremental delivery to get Product feedback
•  Use of information radiators
•  Relevance of amicability and convection currents
•  Three levels of skill (shu, ha, ri)
•  Why methodologies need tuning to fit their ecosystem
•  How to tune yours to your project and your people
•  Timeboxing / increments as core technique
•  Burn-down charts for visibility, iceberg list for scheduling
•  Concurrent development saves time
•  Optimize the rules to fit project-specific bottenecks
•  All agile methodologies use empirical process, cooperative game concepts
•  How to mix in Scrum, consider other named agile methodologies
•  How to look for agile methodologies in your environment

Alistair Cockburn © Humans and Technology, Inc., 1998-2003 Slide 112

The end
Read more at http://Alistair.Cockburn.us

(more
to

come?)

